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Abstract 

This study proposes a way for transforming a fuzzy multi-objective transportation problem (FMOTP) into crisp 

multi-objective transportation problem. The Zimmermann technique has been used to fine the solution for crisp 

multi-objective transportation problem (CMOTP). This study contrasts outcomes of employing hyperbolic and 

pentagonal membership functions with those of utilising exponential membership functions. The study 

demonstrates how real-world issues with inaccurate parameters can be modelled using fuzzy numbers. The 

study shows how to solve transport problems with competing aims by turning fuzzy problems into deterministic 

ones. 
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1. Introduction 

This study addresses the complex challenges 

associated with multi-objective optimization in 

transportation planning in a fuzzy environment. The 

algorithm ensures that the decision-maker always 

makes a more informed choice by comparing fuzzy 

values in an issue using a generic ranking index [11]. 

In today’s dynamic and uncertain business 

landscape, decision-makers often encounter 

situations where conflicting objectives must be 

balanced to achieve optimal outcomes. This 

research introduces a novel approach that 

incorporates fuzzy logic to model the inherent 

uncertainty and imprecision associated with real-

world problems. This work extends the current 

understanding of multi-objective optimization in 

fuzzy environments, A significant number of real-

world issues are intrinsically defined by diverse, 

contradictory, and incoherent aspects of 

assessment. Typically, objective functions are used 

to operationalise these areas of evolution and then 

optimised within the context of multiple objective 

linear programming models. Often, the parameters 

used to solve real-world situations are imprecise 

numerical values. These scenarios can be well 

modelled with pentagonal fuzzy quantities. 

Bellmann and Zadeh are credited with introducing 

the concepts of fuzzy quantities and fuzzy decision 

making. 

Converting fuzzy linear programming problems into 

equivalent predictable linear programs is the most 

popular method for solving them. Modern 

existence would be impossible without 

transportation. Mardanya & Roy (2023) investigate 

the research of Multi-Objective Multi-Item Solid 

Transportation Problem under fuzzy system. The 

multi-objective transportation problem (MOTP) can 

transform into a classical MOTP using order 

relations, deterministic constraints, and fuzzy 

programming for solving [5]. Multi-objective 

periodic routing problem for cash transportation, 

enhancing security through unpredictable paths 

and variable arrival times. A new evolutionary 

algorithm with fuzzy logic and caching is proposed, 

improving solution quality across objectives like 

completion times, robbery risk, and customer [19]. 

In this study author developed a procedure for 

converting the fuzzy numbers in checklist. 

Understanding the influence of real-world 

scenarios, the investigate MMSTP in this instance 

with parameters treated as trapezoidal fuzzy 

numbers, such as transportation cost, supply, and 

demand. The conversation rule is then used to 

transform trapezoidal fuzzy numbers into 

approximately approximation interval numbers. An 
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individual cannot avoid transportation-related 

issues in their daily activity. It is impossible for 

someone to generate what they need at home to 

meet everyday demands. Industries, huge farms, 

etc. can produce items more effectively, but to 

meet demand, both people and goods must move. 

In the needs of large-stage objective increases, 

many authors solved multi-objective problems in 

different ways to find the solution of the optimal 

value. One kind of linear programming problem 

(LPP) is the transportation problem. These days, the 

decision-maker manages multiple objectives 

concurrently in the actual world. The concept 

behind this new model for the weighted goal 

programming approach to minimise the distances 

between practical objective space and ideal 

objectives. It offers Multi Objective Linear 

Programming Problems (MOLPP) the best 

compromised answer. 

To address MOLPP, the suggested model solves a 

different single type of objective subproblems in 

which objectives are converted to constraints [12]. 

In LPP, fuzzy concepts are utilised to manage data 

ambiguity and uncertainty. A Modified method for 

solving kind of fuzzy transportation problem (FTP) 

using generalised trapezoidal fuzzy numbers 

(GTpFN) was presented. In that type of problem, 

the requirements and availability are real numbers, 

but the decider is unsure of the precise value of 

transportation charge. The fuzzy multi-objective 

transportation problem (FMOTP) [1,16,18] 

proposed algorithm is first transformed into crisp 

MOTP by the proposed ranking function. Next, the 

crisp MOTP is changed into single type objective 

transportation problem utilising the values of the 

sum of an objective function. Multi objective fuzzy-

based problems solved by the Zimmerman 

technique using exponential membership 

functions, trapezoidal and hyperbolic membership 

functions [3]. The multicriteria transportation 

problem has been the subject of a straightforward 

mathematical model that uses an exponential 

membership function rather than a linear one. The 

model prioritises finding the best possible 

compromise [5]. Adding a hyperbolic membership 

function to Zimmermann’s fuzzy programming 

method for multi-objective nonlinear programming 

problems. Applying a ranking function to transform 

fuzzy multi-objective nonlinear problems into crisp 

ones, and linearising nonlinear problems in 

Zimmermann’s method to reduce their complexity 

[17]. Some different problems of multi-objective 

are solved by some authors using capacitated 

transportation [2,13] in which used the fuzzy 

programming techniques to find optimal solution. 

Some cases of multi objectivate deterministic multi-

objective model with left, centre, and right interval 

functions replaces the uncertain multi-objective 

optimisation model. Using intuitionistic fuzzy 

programming, a conflicting set of objectives is 

reconciled by considering both the linear and 

nonlinear degree of membership and non-

membership functions [10].  A fuzzy multi-objective 

optimisation technique utilised to address a multi-

objective nonlinear programming issue within the 

framework of structural design. In a fuzzy context 

[7,15] created multi-objective structural problem 

for a planar truss based structural model. 

2. TRANSPORTATION PROBLEM WITH SEVERAL 

OBJECTIVES 

2.1 Conceptual model in mathematics 

Conceptual model in mathematics. Transporting a 

homogeneous product from each of 𝑚 suppliers to 

𝑛 destinations is goal of a classical transportation 

problem. The sources are supplying points, 

warehouses, or production facilities, and they are 

identified by their available capacities 𝑎𝑢(𝑢 =

1,2, … ,𝑚). The locations, which have required 

demand levels 𝑏𝑣(𝑣  =  1,2,   … ,  𝑛) are 

warehouses, demand points, or consuming 

facilities. An infringement the movement of a 

product unit from source u to destination 𝑣 is 

referred to as 𝐶𝑢𝑣. The punishment may be in the 

form of underutilised capacity, delivery time, 

quantity of items provided, or transportation costs. 

From origin 𝑂𝑢 to destination 𝐷𝑣 , an unknown 

quantity to be conveyed is represented by a 

variable 𝑋𝑢𝑣. Though, transport problems might 

have more than one goal; they are not always of the 

single aim variety. Classical linear programming 

works with discrete parameters. However, the 

knowledge that is available in the real world is 

imprecise, unclear, and vague. Fuzzy Sets are used 

to handle the impreciseness and uncertainty 

elements and produce ideal answers. Flexible 

aspiration levels or goals are effectively handled by 

MOLP. Through fuzzy constraints, FMOLP improves 
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efficacy of solutions under workable solutions. The 

technique of FMOLP utilised to solve TSP with 

imprecise & ambiguous parameters [3,11,19]. A 

mathematical formulation of a multi-objective 

transportation problem is as follows: 

Minimize 

𝑍𝑢 =

{
 

 
∑ ∑ 𝑐𝑢𝑣

1𝑛
𝑣=1

𝑛
𝑢=1 𝑥𝑢𝑣

∑ ∑ 𝑐𝑢𝑣
2𝑛

𝑣=1
𝑛
𝑢=1 𝑥𝑢𝑣

∑ ∑ 𝑐𝑢𝑣
𝑝𝑛

𝑣=1
𝑛
𝑢=1 𝑥𝑢𝑣

   (2.1) 

Subject to: 

∑ 𝑥𝑢𝑣
𝑛
𝑣=1 = 𝑎𝑢 , 𝑢 ∈ {1,2, … ,𝑚}  

     

 (2.2) 

∑ 𝑥𝑢𝑣
𝑚
𝑢=1 = 𝑏𝑣 , 𝑣 ∈ {1,2, … , 𝑛}  

     

 (2.3) 

𝑥𝑢𝑣 ≥ 0 ∀ 𝑢, 𝑣            (2.4) 

𝑍𝑝 refers to a penalized variable associated with the 

p-th term, and 𝐶𝑢𝑣 represents the interaction or 

coupling between variables u and v, potentially 

incorporating the p-th penalty criterion to control 

regularization or complexity. This criterion is often 

used to balance model fitting with generalization, 

ensuring that overfitting is minimized by 

appropriately penalizing larger or more complex 

parameters. 

• 𝑎𝑢 > 0 for all 𝑢 

• 𝑏𝑣 > 0 for all 𝑣 

• 𝐶𝑢𝑣 ≥ 0 for all 𝑢, 𝑣 

• ∑ 𝑎𝑢
𝑚
𝑢=1 = ∑ 𝑏𝑣

𝑛
𝑣=1  

For the balanced linear transportation problem to 

have a workable solution, the balanced condition is 

regarded as a necessary and sufficient condition. A 

typical transportation problem consists of exactly 

𝑚 + 𝑛 variables and 𝑚 + 𝑛 constraints. 

The transportation problem is solved like a typical 

linear programming problem because the LINDO 

software handles the problem in explicit equation 

form. 

An Exponential Membership Function 

According to traditional fuzzy set theory, a 

membership function gives each element in the 

discourse universe a value between 0 and 1, 

indicating how much the element belongs to a 

particular set. One minus the membership degree 

gives the degree of non-membership, which is 

simply the complement of the membership value 

[8]. In practice, however, when someone states 

how much an element belongs to a fuzzy set, they 

frequently fail to provide a comparable degree of 

non-membership to complement this value of 1. 

The exponential membership function is defined as: 

 

𝜇𝑝
𝐸𝑍(𝑥) = {

1 if 𝑍𝑝 ≤ 𝐿𝑝
𝑒−𝑠𝜓𝑝

(𝑥)−𝑒−𝑠

1−𝑒−𝑠
if 𝐿𝑝 ≤ 𝑍𝑝 ≤ 𝑈𝑝

0 if 𝑍𝑝 ≥ 𝑈𝑝

 

     

 (2.5) 

 

Where: 

• 𝑍𝑝(𝑥) represents a function or transformation of 

the input variable 𝑥 at the 𝑝-th instance. 

• 𝐿𝑝 and 𝑈𝑝 are constants associated with the 𝑝-th 

instance, typically denoting lower and upper 

bounds respectively. 

• The equation normalizes 𝑍𝑝(𝑥) to a dimensionless 

form 𝜓𝑝(𝑥), scaling the values typically to a [0,1] 

range, assuming 𝑍𝑝(𝑥) ∈ [𝐿𝑝, 𝑈𝑝]. 

• 𝑠 is a non-zero parameter determined by the 

decision maker. 

The parameter 𝑝 = 1,2,3, … , 𝑃 indexes a set of such 

transformations, potentially across multiple 

dimensions, time steps, or data points. 

Triangular Fuzzy Number (TFN) 

A fuzzy number 𝐴 = (𝑎, 𝑏, 𝑐) is said to be a 

Triangular Fuzzy Number (TFN) if its membership 

function is defined as: 

𝜇𝐴(𝑥) =

{
 
 

 
 
𝑥−𝑎

𝑏−𝑎
for 𝑎 ≤ 𝑥 ≤ 𝑏

1 for 𝑥 = 𝑏
𝑐−𝑥

𝑐−𝑏
for 𝑏 ≤ 𝑥 ≤ 𝑐

0 otherwise

  

     

 (2.6) 

Pentagonal Fuzzy Number (PFN) 



 
 
 

157 

Journal of Harbin Engineering University 

ISSN: 1006-7043 

Vol 46 No. 6 

June 2025 

A Pentagonal Fuzzy Number (PFN) is characterized 

by five key points: 

Left end 𝑎1, left mode 𝑎2, middle mode 𝑎3, right 

mode 𝑎4, and right end 𝑎5. 

Its membership function 𝜇𝐴(𝑥) is defined as: 

 

𝜇𝐴(𝑥) =

{
 
 
 
 

 
 
 
 

0, if 𝑥 ≤ 𝑎1
𝛼

2
⋅
(𝑥−𝑎1)

(𝑎2−𝑎1)
, if 𝑎1 ≤ 𝑥 ≤ 𝑎2

𝛼

2
+

𝛼

2
⋅
(𝑥−𝑎2)

(𝑎3−𝑎2)
, if 𝑎2 ≤ 𝑥 ≤ 𝑎3

𝛼

2
+

𝛼

2
⋅
(𝑥−𝑎4)

(𝑎3−𝑎4)
, if 𝑎3 ≤ 𝑥 ≤ 𝑎4

𝛼

2
+

𝛼

2
⋅
(𝑥−𝑎5)

(𝑎4−𝑎5)
, if 𝑎4 ≤ 𝑥 ≤ 𝑎5

0, if 𝑥 ≥ 𝑎5

 (2.7) 

 

This structure creates a pentagonal (or trapezoidal-

like) shape in the graph, where the membership 

rises to 1, stays flat, and then decreases back to 0. 

Figure 1: Pentagonal Fuzzy Number Membership 

Function 

Let us assume that 𝑅: 𝐹 → 𝑅 Here, F represents the 

entire set of fuzzy numbers, and 𝑅 is a linear-type 

function that converts each fuzzy number to its 

corresponding real number. Therefore, for any two 

parameters 𝑎̃ and 𝑏̃ we have: 

 

 𝑎̃ ≥ 𝑏̃ ⇔ ℜ∗( 𝑎̃) ≥  ℜ∗( 𝑏̃) 

 𝑎̃ > 𝑏̃ ⇔ ℜ∗( 𝑎̃) >  ℜ∗( 𝑏̃) 

 𝑎̃ ≡ 𝑏̃ ⇔ ℜ∗( 𝑎̃) =  ℜ∗( 𝑏̃)  

     

 (2.8)  

Under this works focus is limited to clear ranking 

functions, defined as a ranking function ℜ∗ as. 

ℜ∗ (𝑘𝑎
∼
+ 𝑏

∼

) = 𝑘ℜ∗(𝑎
∼
) + ℜ∗ (𝑏

∼

)  (2.9) 

for any 𝑎̃, 𝑏̃ ∈ 𝐹 and any scalar 𝑘 ∈ ℜ∗. 

2.2 A. Ranking function 

When defuzzifying fuzzy logic systems, one 

technique used for ranking fuzzy numbers is 

Rouben's Ranking Function. Fuzzy controllers and 

other systems that must make decisions based on 

fuzzy logic frequently employ defuzzification, which 

is the act of turning a fuzzy set or fuzzy number into 

a crisp value. Rouben's approach uses a ranking 

index to help establish how "large" or "small" a 

fuzzy number is in relation to other fuzzy numbers, 

with the goal of ranking fuzzy numbers. Regarding 

fuzzy sets and their centroids, this function is 

helpful as it offers a quantitative method for 

defuzzification. 

ℜ∗(𝑎
∼
) =

1

2
∫ (inf𝑎

∼
𝛼 + sup𝑎

∼
𝛼)

1

0
 𝑑𝑥  (2.10) 

We obtained the following results: 

ℜ∗(𝑎) =
1

2
(𝑎𝐿 + 𝑎𝑈 +

1

2
(𝛽 − 𝛼))  (2.11) 

for trapezoidal fuzzy number (𝑎𝐿 − 𝛼, 𝑎𝐿 , 𝑎𝑉 , 𝑎𝑉 +

𝛽). 

For pentagonal fuzzy number (𝑚, 𝑟1, 𝑟2, 𝑠1, 𝑠2), we 

have: 

ℜ∗(𝑎) =
𝑆+4𝑚−𝑅

4
    (2.12) 

where 𝑆 = 𝑠1 + 𝑠2 and 𝑅 = 𝑟1 + 𝑟2. 

B. Solving Fuzzy Multi-Objective Transportation 

Problem (FMOTP) 

An uncertain multi-objective transportation 

problem can be defined as follows. The preliminary 

fuzzy model for the problem (Equations 2.1–2.5) is: 

Objective: 

Find 𝑥𝑢𝑣, where 𝑢 = 1,2, … ,𝑚 and 𝑣 = 1,2, … , 𝑛, 

such that: 

𝑍𝑝   ≤
∼

  𝐿𝑝, 𝑝 = 1,2,3, … , 𝑃  (2.13) 

Subject to: 

∑ 𝑥𝑢𝑣
𝑛
𝑣=1 = 𝑎𝑢 , 𝑢 ∈ {1,2, … ,𝑚}  (2.14) 

∑ 𝑥𝑢𝑣
𝑚
𝑢=1 = 𝑏𝑣 , 𝑣 ∈ {1,2, … , 𝑛}  (2.15) 

𝑥𝑢𝑣 ≥ 0, for all 𝑢, 𝑣   (2.16) 
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Here, the symbol ≤
∼

 denotes "fuzzified less than or 

equal to". The fuzzy cost coefficients 𝑎
∼

𝑢𝑣
𝑝

 and 𝑐
∼

𝑢𝑣
𝑝

 

are given as pentagonal fuzzy numbers: 

𝑎
∼

𝑢𝑣
𝑝
= (𝑎𝑢𝑣

1 , 𝑎𝑢𝑣
2 , 𝑎𝑢𝑣

3 , 𝑎𝑢𝑣
4 , 𝑎𝑢𝑣

5 ) 

𝑐
∼

𝑢𝑣
𝑝
= (𝑐𝑢𝑣

1 , 𝑐𝑢𝑣
2 , 𝑐𝑢𝑣

3 , 𝑐𝑢𝑣
4 , 𝑐𝑢𝑣

5 ) 

C. Definition: A solution 𝑥 ∈ 𝑋 is considered 

feasible for the FMOTP (Equations 2.7–2.9) if it 

satisfies the constraints (2.8–2.9). 

D. Definition: An optimal solution to the FMOTP for 

𝑥 ∈ 𝑋 is defined as follows: 

𝑧
∼

𝑢(𝑥) ≥ 𝑧
∼

𝑢(𝑥
∗) ∀ 𝑢 = 1,2, … , 𝑞 

That is, there exists no other 𝑥 ∈ 𝑋 that satisfies 

this condition. 

The FMOTP can be transformed into a classical 

multi-objective transportation problem (MOTP) 

using the ranking function ℜ∗, as shown below: 

max𝑅(𝑧
∼

𝑝) =∑𝑅

𝑣

(𝑐
∼

𝑝𝑢𝑣)𝑥𝑢𝑣 , 𝑝 = 1,2, … , 𝑞 

subject to: 

𝑅(𝑎𝑢𝑣)𝑥𝑢𝑣 ≤ 𝑅(𝑏𝑣), 𝑢, 𝑣 = 1,2, … ,𝑚 

𝑥𝑢𝑣 ≥ 0, for all 𝑢, 𝑣 

max𝑧𝑝
′ =∑𝑐𝑝𝑢𝑣

𝑣

𝑥𝑢𝑣 

subject to: 

∑𝑎𝑢𝑣
𝑣

𝑥𝑢𝑣 ≤ 𝑏𝑣 , 𝑢, 𝑣 = 1,2, … ,𝑚 

𝑥𝑢𝑣 ≥ 0 

Where 𝑎𝑢𝑣
′ , 𝑏𝑢

′ , and 𝑐𝑣
′  are real numbers 

corresponding to the fuzzy numbers 𝑎
∼

𝑢𝑣 , 𝑏
∼

𝑢 , 𝑐
∼

𝑣  

after applying the ranking function ℜ∗. 

3. FUZZY PROGRAMMING TECHNIQUE 

Mathematically, MOTP can be solved as follows: 

min𝑍𝑝 =

{
 

 
∑ ∑ 𝑐𝑢𝑣

1𝑛
𝑣=1

𝑚
𝑢=1 𝑥𝑢𝑣

∑ ∑ 𝑐𝑢𝑣
2𝑛

𝑣=1
𝑚
𝑢=1 𝑥𝑢𝑣

∑ ∑ 𝑐𝑢𝑣
𝑝𝑛

𝑣=1
𝑚
𝑢=1 𝑥𝑢𝑣

   (3.1) 

∑ 𝑥𝑢𝑣
𝑛
𝑣=1 = 𝑎𝑢 , 𝑢 = 1,2,3, … ,𝑚.   (3.2) 

Subject to: 

∑ 𝑥𝑢𝑣
𝑚
𝑢=1 = 𝑏𝑣 , 𝑣 = 1,2,3, … , 𝑛.  (3.3) 

𝑥𝑢𝑣 ≥ 0 for all 𝑢, 𝑣. 

We apply Zimmermann's fuzzy programming 

technique. The steps below provide a quick 

overview of the process. 

Step 1. Employ a sequential optimization approach 

to address MOLPP. By isolating each objective 

function in turn and disregarding the others, solve 

the problem 𝑞 times for 𝑞 distinct objective 

functions. Denote the optimal solutions for these 

individual optimizations as 𝑋1, 𝑋2, … , 𝑋𝑞. 

Step 2. Now that you have the 𝑞 perfect solutions 

from Step 1, create a 𝑞 × 𝑞 payout matrix. Then, 

using the reward matrix, calculate the upper bound 

(𝑈𝑝) and lower bound (𝐿𝑝) for the objective 

function 𝑍𝑝
′ . This yields inequality: 

𝐿𝑝 ≤ 𝑍𝑝
′ ≤ 𝑈𝑝 for 𝑝 = 1,2, … , 𝑞. 

Step 3. The following is the formulation of an 

analogous crisp model for the fuzzy model if we use 

an exponential membership function as specified in 

(3.1). An exponential membership function is 

defined by: 

𝜇𝐸𝑍𝑝(𝑥) = {

1 if 𝑍𝑝 ≤ 𝐿𝑝,

𝑒−𝑠𝜓𝑝
(𝑥)−𝑒−𝑠

1−𝑒−𝑠
if 𝐿𝑝 ≤ 𝑍𝑝 ≤ 𝑈𝑝,

0 if 𝑍𝑝 ≥ 𝑈𝑝,

 

     

 (3.4) 

where 

𝜓𝑝(𝑥) =
𝑍𝑝(𝑥)−𝐿𝑝

𝑈𝑝−𝐿𝑝
, 𝑝 = 1,2, … , 𝑃,  

and 𝑠 is a non-zero parameter prescribed by the 

decision-maker. 

This is how an analogous crisp model for the fuzzy 

model is created if we apply the exponential 

membership function as specified in equation (3.4): 

Max𝜆     (3.5) 

subject to: 

𝜆 ≤
𝑒−𝑠𝜓𝑝

(𝑥)−𝑒−𝑠

1−𝑒−𝑠
, 𝑝 = 1,2, … , 𝑃.  (3.6) 

∑ 𝑥𝑢𝑣
𝑚
𝑣=1 = 𝑏𝑣 , 𝑣 = 1,2, … , 𝑛.   (3.7) 

𝑥𝑢𝑣 ≥ 0 for all 𝑢, 𝑣.   (3.8) 

The above problem (3.5–3.8) can be further 

simplified as: 
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max𝑋3     (3.9) 

subject to: 

𝑠{1 − 𝜓𝑝(𝑥)} ≥ 𝑋3, 𝑝 = 1,2, … , 𝑃. 

     

 (3.10) 

∑ 𝑥𝑢𝑣
𝑛
𝑣=1 = 𝑎𝑢 , 𝑢 = 1,2, … ,𝑚.  (3.11) 

subject to: 

∑ 𝑥𝑢𝑣
𝑚
𝑢=1 = 𝑏𝑣 , 𝑣 = 1,2, … , 𝑛.  (3.12) 

𝑥𝑢𝑣 ≥ 0 ∀𝑢, 𝑣, 𝑋3 ≥ 0, 

where 

𝑋3 = log{1 + 𝜆(𝑒
𝑠 − 1)}. 

Step 4. Find the best compromise solutions by 

solving the crisp model. Analyze the objective 

function values at the compromise decisions. 

 

 

 

4. NUMERICAL EXAMPLE 

According to the data from [3], 

Objective Functions: 

min 𝑧1(𝐱) = 16𝑥11 + 19𝑥12 + 12𝑥13 + 22𝑥21
+ 13𝑥22 + 19𝑥23 + 14𝑥31
+ 28𝑥32 + 8𝑥33 

𝑚𝑖𝑛 𝑧1(𝐱) = 16𝑥11 + 19𝑥12 + 12𝑥13 + 22𝑥21
+ 13𝑥22 + 19𝑥23 + 14𝑥31
+ 28𝑥32 + 8𝑥33 

subject to: 

∑𝑥𝑢𝑣

3

𝑣=1

= 14, 𝑢 = 1,2,3

∑𝑥𝑢𝑣

3

𝑢=1

= 16, 𝑣 = 1,2,3

∑∑𝑥𝑢𝑣

3

𝑣=1

3

𝑢=1

= 12

𝑥𝑢𝑣 ≥ 0, 𝑢 = 1,2,3, 𝑣 = 1,2,3.

 

Fuzzy Parameters: 

16 = (15.8,15.9,16,16.1,16.2)

19 = (18.8,18.9,19,19.1,19.2)

12 = (11.8,11.9,12,12.1,12.2)

22 = (21.8,21.9,22,22.1,22.2)

13 = (12.8,12.9,13,13.1,13.2)

19 = (18.8,18.9,19,19.1,19.2)

14 = (13.8,13.9,14,14.1,14.2)

28 = (27.8,27.9,28,28.1,28.2)

8 =             (7.8,7.9,8,8.1,8.2)

9 =             (8.8,8.9,9,9.1,9.2)

10 =     (9.8,9.9,10,10.1,10.2)

20 =      (19.8,19.9,20.1,20.2)

15 = (14.8,14.9,15,15.1,15.2)

6 =             (5.8,5.9,6,6.1,6.2)

17 = (16.8,16.9,17,17.1,17.2)

1 =             (0.8,0.9,1,1.1,1.2)

 

Fuzzy Objective Functions: 

min  𝑧1(𝐱) = ℜ∗ (16
∼

) 𝑥11 +ℜ
∗ (19

∼

) 𝑥12 + ℜ
∗ (12

∼

) 𝑥13

  +ℜ∗ (22
∼

) 𝑥21 +ℜ
∗ (13

∼

) 𝑥22 + ℜ
∗ (19

∼

) 𝑥23

  +ℜ∗ (14
∼

) 𝑥31 +ℜ
∗ (28

∼

) 𝑥32 + ℜ
∗ (8

∼

) 𝑥33

     (4.1) 

min  𝑧2(𝐱) = ℜ∗ (9
∼

) 𝑥11 + ℜ
∗ (14

∼

) 𝑥12 + ℜ
∗ (12

∼

) 𝑥13

  +ℜ∗ (16
∼

) 𝑥21 + ℜ
∗ (10

∼

) 𝑥22 + ℜ
∗ (14

∼

) 𝑥23

  +ℜ∗ (8
∼

) 𝑥31 + ℜ
∗ (20

∼

) 𝑥32 + ℜ
∗ (6

∼

) 𝑥33

              

(4.2) 

 

Fuzzy Constraints: 

ℜ∗ (1
∼

) 𝑥11 + ℜ
∗ (1

∼

) 𝑥12 + ℜ
∗ (1

∼

) 𝑥13 = ℜ
∗ (14

∼

)

ℜ∗ (1
∼

) 𝑥21 + ℜ
∗ (1

∼

) 𝑥22 + ℜ
∗ (1

∼

) 𝑥23 = ℜ
∗ (16

∼

)

ℜ∗ (1
∼

) 𝑥31 + ℜ
∗ (1

∼

) 𝑥32 + ℜ
∗ (1

∼

) 𝑥33 = ℜ
∗ (12

∼

)

ℜ∗ (1
∼

) 𝑥11 +ℜ
∗ (1

∼

) 𝑥21 + ℜ
∗ (1

∼

) 𝑥31 = ℜ
∗ (10

∼

)

ℜ∗ (1
∼

) 𝑥12 +ℜ
∗ (1

∼

) 𝑥22 + ℜ
∗ (1

∼

) 𝑥32 = ℜ
∗ (15

∼

)

ℜ∗ (1
∼

) 𝑥13 +ℜ
∗ (1

∼

) 𝑥23 + ℜ
∗ (1

∼

) 𝑥33 = ℜ
∗ (17

∼

)

𝑥𝑢𝑣 ≥ 0, 𝑢 = 1,2,3, 𝑣 = 1,2,3.

     (4.3) 

Equivalent Crisp Model: 

min  𝑧1(𝐱) = 15.9𝑥11 + 18.9𝑥12 + 11.9𝑥13
  +21.9𝑥21 + 12.9𝑥22 + 18.9𝑥23
  +13.9𝑥31 + 27.9𝑥32 + 7.9𝑥33

     

 (4.4) 
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min  𝑧2(𝐱) = 8.9𝑥11 + 13.9𝑥12 + 11.9𝑥13
  +15.9𝑥21 + 9.9𝑥22 + 13.9𝑥23
  +7.9𝑥31 + 19.9𝑥32 + 5.9𝑥33

     

 (4.5) 

Subject to: 

1.01𝑥11 + 1.02𝑥12 + 1.01𝑥13 = 14.9

1.01𝑥21 + 1.01𝑥22 + 1.02𝑥23 = 15.9

1.02𝑥31 + 1.01𝑥32 + 1.01𝑥33 = 11.9

1.02𝑥11 + 1.01𝑥21 + 1.01𝑥31 = 9.9

1.01𝑥12 + 1.02𝑥22 + 1.01𝑥32 = 14.9

1.01𝑥13 + 1.02𝑥23 + 1.01𝑥33 = 16.9

𝑥𝑖𝑗 ≥ 0, 𝑖 = 1,2,3, 𝑗 = 1,2,3.

 (4.6) 

Solution: 

Using step 1 and step 2, minimize 𝑧1 subject to 

constraints (4.6) as: 

𝑥13 = 14.752, 𝑥22 = 15.742, 𝑥33 = 11.782 

with 𝑍𝑅(𝑋1) = 456, 𝑍𝑅(𝑋2) = 471. 

Similarly, minimize 𝑧2 subject to constraints (4.6) 

as: 

𝑥11 = 14.752, 𝑥22 = 15.742, 𝑥33 = 11.782 

with 𝑍𝐶(𝑋1) = 320, 𝑍𝐶(𝑋2) = 356. 

Using step-3 the exponential membership function 

and formulate the equivalent crisp model for the 

fuzzy problem. Apply the constraints using the 

bonds identified in step 2 and solve the resulting 

optimization problem. 

𝑈1 = 471, 𝐿1 = 456, 𝑈2356, 𝐿2 = 320. Find 𝑥𝑖𝑗 , 

𝑖 = 1,2,3; 𝑗 = 1,2,3. So as to satisfy: 

𝑍𝑅 ≤ 471, 𝑍𝐶 ≤ 320 constraints (4.6). An equation 

crisp model with the parameter 𝑠 = 1 can be stated 

as: 

min𝑋3     (4.7) 

subject to: 

𝑠[𝑧1(𝑥)] + 𝑋4(𝑈1 − 𝐿1) ≥ 𝑠(𝑈1) 

𝑠[𝑧2(𝑥)] + 𝑋4(𝑈2 − 𝐿2) ≥ 𝑠(𝑈2)  (4.8) 

subject to: 

∑ 𝑥𝑖𝑗
𝑛
𝑗=1 = 𝑎𝑖 , 𝑖 = 1,2, … ,𝑚  (4.9) 

∑ 𝑥𝑖𝑗
𝑚
𝑖=1 = 𝑏𝑗 , 𝑗 = 1,2, … , 𝑛  (4.10) 

𝑥𝑖𝑗 ≥ 0 ∀𝑖, 𝑗, 𝑋3 ≥ 0 

where 𝑋3 = log{1 + 𝜆(𝑒
𝑠 − 1)}. 

min  𝑧1(𝐱) = 15.9𝑥11 + 18.9𝑥12 + 11.9𝑥13
  +21.9𝑥21 + 12.9𝑥22 + 18.9𝑥23

  +13.9𝑥31 + 27.9𝑥32 + 7.9𝑥33 + 15𝑋4 ≥ 471

    (4.11) 

min  𝑧2(𝐱) = 8.9𝑥11 + 13.9𝑥12 + 11.9𝑥13
  +15.9𝑥21 + 9.9𝑥22 + 13.9𝑥23

  +7.9𝑥31 + 19.9𝑥32 + 5.9𝑥33 + 35.887𝑋4 ≥ 356

    (4.12) 

subject to: 

  1.01𝑥11 + 1.02𝑥12 + 1.01𝑥13 = 14.9

1.01𝑥21 + 1.01𝑥22 + 1.02𝑥23 = 15.9

1.02𝑥31 + 1.01𝑥32 + 1.01𝑥33 = 11.9

1.02𝑥11 + 1.01𝑥21 + 1.01𝑥31 = 9.9

1.01𝑥12 + 1.02𝑥22 + 1.01𝑥32 = 14.9

1.01𝑥13 + 1.02𝑥23 + 1.01𝑥33 = 16.9

𝑥𝑢𝑣 ≥ 0 for all 𝑢, 𝑣 = 1,2,3 and 𝑋3 ≥ 0.

     (4.13) 

The best possible solution to the given problem i.e. 

{

𝑥11 = 14.752, 𝑥22 = 15.742, 𝑥33 = 11.782
𝑥31 = 9.801, 𝑥13 = 14.752

Remaining 𝑥𝑢𝑣’s are zero.
 

with  

𝑍1 = 456.8768, 𝑍𝐶𝑋2 = 356.6634, 𝜆 = 0.50. 

 

 

 

 

 

 

LINGO program’s Output 

Global optimal solution found. 

Objective value :  356.6634 

Infeasibilities :  0.000000 

Total solver iterations :  0 

Elapsed runtime seconds: 0.07 

Model Class: LP 

Total variables :  11 

Nonlinear variables :  0 

Integer variables :  0 

Total constraints :  5 
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Nonlinear constraints :  0 

Total non zeros : 20 

Nonlinear non zeros :  0 

Variable  Value   Reduced Cost 

X11   14.75248  0.000000 

X12   0.000000  4.911881 

X13   0.000000  3.000000 

X21   0.000000  6.000000 

X22   15.74257  0.000000 

X23   0.000000  3.901980 

X31   0.000000  1.532673 

X32   0.000000  14.00000 

X33   11.78218  0.000000 

X4   0.000000  35.88700 

MIN   356.0000  0.000000 

Row  Slack or Surplus  Dual Price 

1  356.6634   -1.000000 

2  0.000000   0.000000 

3  0.000000   -8.811881 

4  0.000000   -9.801980 

5  0.000000   -5.841584 

 

Figure 2. Objective value Z1 obtained by LINGO 

Software 

Global optimal solution found. 

Objective value : 456.8768 

Infeasibilities : 0.000000 

Total solver iterations:  0 

Elapsed runtime seconds:  0.04 

Model Class: LP 

Total variables :  11 

Nonlinear variables:  0 

Integer variables :  0 

Total constraints :  5 

Nonlinear constraints :  0 

Total non zeros  :  20 

Nonlinear non zeros:  0 

 

Variable  Value   Reduced Cost 

X11   0.000000  1.862376 

X12   0.000000  6.126471 

X13   0.000000  4.000000 

X21   0.000000  8.000000 

X22   14.60784  0.000000 

X23   0.000000  10.92178 

X31   9.801980  0.000000 

X32   0.000000  15.12647 

X33  16.73267  0.000000 

X4   0.000000  15.00000 

MIN   471.0000  0.000000 

 

Row  Slack or Surplus  Dual Price 

1   456.8768  -1.000000 

2   0.000000  0.000000 

3   0.000000  -13.76238 

4   0.000000  -12.64706 

5   0.000000  -7.821782 

 

Figure 3. Objective value ZcX2 obtained by LINGO 

Software 

5. Conclusions 

Finally, this work provides a simple method for 

applying the Zimmermann methodology with 

exponential membership functions to convert a 

FMOTP into a crisp one. The suggested approach 

makes it easier to solve multi-objective fuzzy 

transportation issues in an efficient manner, 

especially when working with pentagonal fuzzy 

numbers. The study illustrates how fuzzy numbers 

can accurately simulate real-world issues with 

imprecise parameters by contrasting the results 

produced from hyperbolic and pentagonal 

membership functions with those obtained using 
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exponential membership functions. The suggested 

technique provides a workable substitute for 

solving FMOT issues by streamlining the application 

and lowering computing overhead. 
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