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Abstract: One of the most important financial assumptions that investors face is and will always be stock price 

forecasting. There are many approaches to accurately predict a company's share price, most of which depend 

on different variables that affect the share price in the market. Time series data analysis is one of the main 

models used in data analysis. A significant class of models in machine learning, econometrics, and statistics is 

time series forecasting. Predictions from a time series model are typically predicated on the idea that historical 

trends will recur in the future. This paper establish comparison of four Arima (1,0,1), (5,1,1) (1,1,1) & (4,1,2) 

modal for private sector bank index from 10/06/24 to 20/06/24. The result shows that (5,1,1) gives the best 

result. 
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1. Introduction : It is very difficult to forecast the 

stock prices though stock prices is part of time 

series analysis. Stock prices are non-linear and 

non-stationary due to a variety of factors that 

influence them. Due to the large amount of noise 

and constantly shifting conditions, forecasting the 

stock price index requires a number of processes. 

Time series data related to stock prices. The data 

used in the financial business, namely stock price 

indices, are frequently highly volatile, stochastic, 

and heteroscedastic. Volatility as a measure of 

uncertainty is applied to time series data that 

exhibit conditional heteroscedasticity, that is, non-

uniform variance. Heteroscedasticity serves as the 

variance to be modeled in the ARCH and GARCH 

models, allowing us to know Hajizadeh et al. (2012) 

made an effort to improve GARCH-type models 

capacity to predict return volatility. They put forth 

two hybrid models that combine the EGARCH 

model and neural networks. 

The Glosten et al. (1993) study improved the 

model and suggested GJR GARCH. The premise 

behind their model is that volatility reacts 

asymmetrically to both positive and negative 

shocks. This research investigates the existence of 

long memory in the mean and volatility of the 

Naira per Dollar exchange rate series using models 

of autoregressive fractionally integrated moving 

average (ARFIMA), generalised autoregressive 

conditional heteroscedastic (GARCH), and 

fractionally integrated generalised autoregressive 

conditional heteroscedastic (FIGARCH) 

origins.Floros &Christos (2008) investigated the 

application of GARCH-type models for modelling 

volatility and explaining financial market risk using 

daily data from Israel (TASE-100 index) and Egypt 

(CMA General Index). The investigation came to 

the conclusion that there is substantial evidence to 

support the above models' ability to describe daily 

returns. Fereshteh and Hossein (2013) utilised 

GARCH (1-1) and GARCH (2-2) to examine the 

volatility of a chosen pharmaceutical group, car 

group, and oil business utilizing daily index data 

from 2006 to 2010. The outcome demonstrated 

volatility feedback in the oil and pharmaceutical 

industries. Volatilities have a positive impact on 

output in the pharmaceutical group, but a negative 

impact on the oil group. Furthermore, it wasn't 

verified in the car group. Zhang et al. (2018) used 

eighteen macroeconomic and eighteen technical 

factors to study oil price forecasting. For a mean-

variance investor, the outcomes produced 

certainty comparable return gains and 

demonstrated accurate forecasting.A time series is 

simply a collection of observations arranged 

chronologically. Bozarth (2016) Time series 

forecastingmodels forecast demand using 

mathematical methods derived from historical 

data. Zhang(2017) used this method to present a 

hybrid ARIMA and ANN approach for time series 
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forecasting. To capture various types of 

relationships in the time series data, Zhang's 

hybrid model combines the linear ARIMA and 

nonlinear multilayer perceptrons models.To 

achieve accurate predictions in the foreign 

exchange market, Yu et al. (2005) proposed a 

novel onlinear ensemble forecasting model that 

integrates neural networks and generalised linear 

auto regression (GLAR).Box and 

Jenkins(1976)suggested using the sample data's 

autocorrelation function (ACF) and partial 

autocorrelation function (PACF) as the 

fundamental tools to determine the order of the 

ARIMA model.  

2. Arima Model: Time series analysis primarily 

relies on four key models:moving average (MA), 

auto-regressive (AR), auto-regressive moving 

average (ARMA), and auto-regressive integrated 

moving average (ARIMA). The ARIMA model is 

utilized extensively in time forecasting. The ARIMA 

model is widely recognized forits accuracy and 

adaptability in predicting a broad range of time 

series data sources.The purpose of the ARIMA 

model is to forecast and analyze time series data 

by figuring out the best values for the p, d and q 

parameters. The smoothness of the series is used 

to calculate the number of differences, or d, for a 

particular time series data set. The ACF and PCAF 

plots are then used to derive the values of p and q 

for the AR(p) and MA(q) components. The ARIMA 

model's generic form is 

Yt

= c + ∅1Yt−1

+ ∅2Yt−2+. . . . ∅pYt−p+ ∅2δt−1+ ∅1δt−2+ ∅qδt−q

+ ε 

The predicted outcome of the variable is denoted 

by Yt, while the preceding values of the dependent 

variable or autoregressive terms are represented 

by  Yt−1, Yt−2, − − − − Yt−p . The error term is 

represented by εt while the moving average terms 

or error lagged values are denoted by α and θ. 

3.  Methodology: To develop an ARIMA model, 

you need to do two main steps: model 

identification, and parameter estimation. Data on 

private sector index stock prices during 10 days 

from June 10 to June 20 was obtained from NSE. 

Because it provides a fair and reliable indicator of 

equity value, supplementingthe simple market 

price, we decided to utilise the adjusted closing 

price for our research. E-Views software, version 

10, was the instrument utilizes to perform the time 

series analysis. 

3.1 Model Identification:In order to develop an 

ARIMA model, also known as the Box & Jenkins’s 

model, we first plot the raw data graph in order to 

gain a general understanding of the data and 

analyse its patterns. This enables us to ascertain 

whether the data series is stationary. The principal 

assumption is that the stationary. The mean and 

variance of the process would not change over 

time. Nonetheless, in the domains of finance and 

economics, time-varying conditional variance is 

commonly observed in series. Additionally, non-

stationary in variance is often seen in high 

frequency data, such as hourly, daily, and weekly 

data. The Auto correlation Function, the ACF plot, 

and the Augmented Dicker Fuller Test (Unit Root 

Test) are instruments used to verify the stationary 

of the data series. The auto correlation of the time 

series is plotted versus lags using the ACF. In a 

dataset, lag is the interval of time between one 

observation and its predecessor. To achieve 

stationary, data transformation will be performed 

if the data series is not stationary. We use 

differencing in this work in order to achieve 

stationaryby computing the difference between 

successive observations, We can eliminatetrend 

patterns fromdata by using differentiating. 

Usually, 𝑑 =  1 or first differentiating is enough to 

stabilize the mean and make the time series data st

ationary. Excessive differentiating often results in 

superfluous correlation within the model. A 

prerequisite for using the ARIMA model is 

stationery. To determine the quantity of AR or MA 

terms in the ARIMA model, we look at the 

correlogram pattern, which is represented by plots 

of the autocorrelation function (ACF) and partial 

autocorrelation function (PACF). 

3.2   Parameter setting: In the ARIMA (p, 1, q) 

model, we use the trial-and-error method to find 

the order of p and q. Our "simplest to best" 

approach is used until we get the best 

parsimonious model. The best-fitting model in this 

instance is based on the statistically significant 

coefficients. The Akaike-Information Criterion (AIC) 
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and the Bayesian or Schwarz Information Criterion 

(SIC) scores are used to identify the best model. 

Model with lowest AIC and SIC values is the 

suggested model. 

 

4. Data Preprocessing 

4.1 Stationary test: As intended, Table 1 depicts 

the non-stationary behaviour of share prices. The 

ADF test statistic, which is negligible at the 5% 

level, attests to the outcome. Therefore, natural 

logarithms have been used for stock prices in order 

to induce stationarity. The change in the log of 

stock prices, or the first difference, has then been 

considered. Table 2 shows that the outcome is a 

stationary series.  

 

 

 

Modal  Test for Unit root t-statistics Probability 

Test statistics First difference level -6.9069 0.0005 

 

Table 1:         Automated Dickey Fuller test statistics 

Modal  Test for Unit root t-statistics Probability 

Test statistics First difference level -6.2931 < 0.01 

 

Table 2:       Automated Dickey Fuller test statistics 

4.2 Model Estimation 

Dependent variable: ADJ Closing Price 

Sample: 10/06/24 to 20/06/24 

Including observation: 7 

Variable  Coefficient  Std Error t-Statistic  Prob 

C 7413.321 23.407 316.7132 0.000 

AR(5) -0.972552 0.869780 -1.1181 0.3450 

MA(1) 0.454809 0.840342 0.5412270 0.6260 

R-Square 0.969647 Mean dependent var  7424.2249 

Adj Rsquare 0.939294 S.D.dependent var  63.10413 

S.E. of regression 15.547 Akaika info criterian  10.73070 

Sum square 725.2193 Schwartz criterian  10.69979 

Log likilihood -33.56746 Hannan-Quinn criter  10.34868 

F-Statistic 31.94560 Durbin -Watson Stat  1.667711 

 

Table 3:  Arima (5,1,1) for private sector index. 

The ARIMA (5, 1, 1) model, which was chosen 

using the standard Box-Jenkins approach, is shown 

in Table 1 with its findings. At the 5% level, the 

model's two parameters are both significant. The 

model's corrected R2 value is .96. But in order to 

make sure this model fits the data the best, a few 

other likely models are also tested and compared 

with one another. 

 

Dependent variable: ADJ Closing Price 

Sample: 10/06/24 to 20/06/24 
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Including observation:7 

Variable  Coefficient  Std Error t-Statistic  Prob 

C 7424.351 42.63699 174.1293 0.000 

AR(1)  0.909379 2.675472 0.339895 0.7563 

MA(1) -0.999773 527.8964 -0.001894 0.9986 

R-Square 0.059707 Mean dependent var  7424.2249 

Adj Rsquare -0.880587 S.D.dependent var  63.10413 

S.E. of regression 86.53752 Akaika info criterian  12.09534 

Sum square 22466.23 Schwartz criterian  12.06444 

Log likilihood -38.333 Hannan-Quinn criter  11.71332 

F-Statistic 0.634 Durbin -Watson Stat  0.376263 

     

 

Table 4: Arima (1,0,1) for private sector index. 

The ARIMA (1, 0, 1) model, which is frequently 

employed in several ARIMA investigations by 

academics, is represented by the results in Table 3. 

Given that one of the three model parameters is 

negligible at the 5% level, this model appears to be 

a little bit worse than the ARIMA (5, 1, 1) model or 

the one that uses the Box-Jenkins technique. 

Nonetheless, the two models have the same 

modified R2 value. In comparison to ARIMA (5, 1, 

1), ARIMA (1, 0, 1) has higher values for the 

Hannan-Quinn criterion (HQC), the Schwarz 

Bayesian criterion (SBC), and the Akaike 

information criterion (AIC). ARIMA (5, 1, 1) can be 

regarded as a better model since the lower the 

information criteria values, the better the model. 

Dependent variable: ADJ Closing Price 

Sample: 10/06/24 to 20/06/24 

Including observation:7 

 

 

 

Variable  Coefficient  Std Error t-Statistic  Prob 

C 7413.321 23.407 316.7132 0.000 

AR(5) -0.972552 0.869780 -1.1181 0.3450 

MA(1) 0.454809 0.840342 0.5412270 0.6260 

R-Square 0.969647 Mean dependent var  7424.2249 

Adj Rsquare 0.939294 S.D.dependent var  63.10413 

S.E. of regression 15.547 Akaika info criterian  10.73070 

Sum square 725.2193 Schwartz criterian  10.69979 

Log likilihood -33.56746 Hannan-Quinn criter  10.34868 

F-Statistic 31.94560 Durbin -Watson Stat  1.667711 

 

Table 5:Arima (1,1,1) for private sector index: 
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We further examined at the most basic auto regressive process of order 1, often known as the ARIMA (1, 1, 1) 

process or the AR (1) and MA(1) process, in an effort to further simplify or abridge our recommended model. 

All of the information criteria values, including AIC, SBC, and HQC, were found to be lower than those for 

ARIMA (1, 0, 1), however the adjusted R 2 value was determined to be the same as ARIMA (5, 1, 1). Table 5 

summarize the outcomes of the ARIMA (1, 1, 1) model. 

Dependent variable: ADJ Closing Price 

Sample: 10/06/24 to 20/06/24 

Including observation:7 

Variable  Coefficient  Std Error t-Statistic  Prob 

C 7426.321 23.407 316.7132 0.000 

AR(4) -0.719898 0.869780 -1.1181 0.3450 

MA(2) -0.998847 0.840342 0.5412270 0.6260 

R-Square 0.7517 Mean dependent var  7424.2249 

Adj Rsquare 0.50342 S.D.dependent var  63.10413 

S.E. of regression 44.456 Akaika info criterian  11.7410 

Sum square 5932.282 Schwartz criterian  11.71037 

Log likilihood -37.09 Hannan-Quinn criter  11.71332 

F-Statistic 3.023 Durbin -Watson Stat  0.65603 

 

Table 6:Arima (4, 2, 1) for private sector index :  

The prediction ability of ARIMA (4, 2, 1) was also 

examined in an effort to find the best possible 

model. Table 6 illustrates that every model 

parameter was highly significant. Compared to all 

the modalities, the model's adjusted R2 was 

marginally lower. However, the model's 

information criterion values were all marginally 

higher than those of ARIMA (1, 1, 1) and ARIMA (5, 

1, 1), which further impacted the model's potential 

in comparison to ARIMA (1, 1, 1) and ARIMA (5, 1, 

1). 

4.3 Residual test : The line graph  has three 

plotted lines with the following labels: 

Residual(Blue) , Actual (orange),Fitted (green) 

 

 

Fig 1:Residual series test plot for model(5,1,1)                      Fig 2:Residual series test plot for Model (1,0,1) 
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Fig 3: 

Residual series test plot for model( 1,1,1)                 Fig 4: Residual series test plot for model ( 4,1,2) 

In Fig 1; The observation indicating the values of 

the residuals are not dispersed at random around 

zero may indicate that the model contains bias or 

non-linearity.Despite some deviations, the Actual 

and Fitted lines show a similar pattern, suggesting 

the model captures the overall trend.The Residuals 

are plotted separately and are represented by the 

difference between the Actual and Fitted lines. 

In Fig 2: The residuals are not dispersed randomly 

along the horizontal zero line.There is a distinct 

pattern: a wave-like pattern of alternating ups and 

downs.A smooth upward trend is followed by a 

peak and a slight decline in the actual 

values.Although the fitted values are generally 

close, there is some discrepancy, particularl 

In Fig 3: Model seems to be accurately capturing 

the data's trend because the fitted and actual lines 

are near to one another.Residual Pattern: The 

model's assumptions (such as linearity and 

homoscedasticity) may hold water if the residuals 

are dispersed randomly and don't exhibit any 

discernible pattern 

In Fig 4: The residuals may have some cyclical or 

autocorrelated structure, as suggested by the 

alternating up-and-down pattern. It could mean 

that the model is lacking a seasonality or trend 

component.A more intricate model or additional 

refinement could enhance fit. 

5. Conclusion:  Analysis of the private sector bank 

index prices performance during ten days of NSE 

trading value gives us the ARIMA (5,1,1) model 

was selected from three alternative model 

parameters(1,0,1), (1,1,1) & (4,1,2)because it 

offers the best model and meets all fit statistics 

criteria, while the other three models(1,0,1), (5,1,1) 

(1,1,1) & (4,1,2) did not meet fit statistics 

requirements.ARIMA (5,1,1) model provides a 

strong and reliable framework for predicting the 

short-term price changes of the private sector 

bank index. Its selection emphasis how important 

it is to compare models rigorously using residual 

diagnostics and statistical fit measures. According 

to the model's excellent performance, recent price 

trends in the index show moving average and 

auto-regressive behaviour, which can be 

successfully captured for forecasting and 

investment decision-making. To improve 

predictive accuracy significantly, future studies 

might use a longer time period or include 

exogenous variables. 
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