Vol 46 No. 10
October 2025

Journal of Harbin Engineering University
ISSN: 1006-7043

Multicycle RV32IM Microprocessor for Edge Computing Applications

Lekhana Vempa?, Atsatha B2, Keerthana Penumaka?
123 M. Tech VLSI Design, School of Electronics Engineering, Vellore Institute of Technology, Tamil Nadu, India
Email Id: ! lekhanavempa@gmail.com, 2 atsathab@gmail.com, 3 keerthana.penumaka@gmail.com

Abstract

This paper explores the design of a multicycle RV32IM microprocessor for edge computing applications. Leveraging the
modularity of the RISC-V architecture, the RV32IM processor is tailored to address the needs of low-power, high-
performance devices in real-time computing scenarios. By implementing a multicycle approach, the processor splits
instruction execution into stages, allowing for a more efficient use of resources compared to single-cycle designs. This
approach results in reduced hardware complexity, improved clock speeds, and better power management. The paper
presents the processor's design process, performance metrics, and its suitability for applications such as loT devices,
smart sensors, and low-cost edge computing platforms.

Keywords: RISC-V, RV32IM, Edge computing, Instruction set Architecture(ISA),Jump and Link (JAL), Jump and Link

register (JALR).

1. Introduction

In recent years, RISC processors have become
increasingly popular because of their simple
architecture and flexibility. This is particularly true for
low-cost devices like smartwatches, basic
smartphones, budget-friendly smart home gadgets,
and fitness trackers, where RISC-V processors offer a
great balance of performance and efficiency.

The RV32IM microprocessor, based on the open-source
RISC-V architecture, has gained attention due to its
customizable and modular design. The RV32l core,
along with the optional "M" extension for integer
multiplication and division, provides a solid foundation
for building processors that can be tailored to specific
tasks. This paper focus is on the design and its
implementation of a multicycle RV32IM processor,
optimized for edge computing. Multicycle processor
design helps in breaking the execution of instructions
into multiple stages while in single cycle processor
design the instructions handle all instructions in one
cycle. This breaking of instructions helps make the
design simple, allows higher clock speed, and makes
better use of resources resulting in improved
performance and better energy efficiency, both of
which are essential for edge computing applications.

2. Edge computing

Edge computing is the process of processing data near
its source, at the network's edge, to offer low-latency,
energy-efficient, and secure solutions for applications
like the Internet of Things, automotive systems, and
medical devices. While the centralized cloud computing
does the complete work in the centralized cloud, but
edge computing works contrary to the cloud computing
by reducing the data transmission, latency and
bandwidth consumption while improving privacy by
processing the private or sensitive data locally. This is
really essential for real-time applications where fast
data processing is required, like integration of sensors
in driverless cars (ADAS), smart agricultural monitoring.
By assigning computational tasks to devices with
limited resources, edge computing helps to create
scalable and efficient systems that are appropriate for
a range of latency-sensitive use cases.

Role of Multicycle in Edge Computing

The base integer instruction set (RV32l) and
multiplication/division extension (M) of the multicycle
RISC-V RV32IM architecture makes it optimal for edge
computing applications since it provides energy
efficiency and customizability. There can be further
design which can be proposed for particular edge
applications, like adding unique instructions for
machine learning or sensor data processing, because of
RISC-V’s open-source nature. With this flexibility and a

146

Journal of Harbin Engineering University
ISSN: 1006-7043

small size, RV32IM-based systems are ideal for edge
devices with limited resources, such as wearables,
smart sensors, and industrial controllers.

Why multicycle over single cycle and pipelining
processors

In contrast to single-cycle and pipelined architectures,
multicycle RISC-V RV32IM processors provide clear
benefits for edge computing. Multicycle designs divide
instruction execution into multiple cycles, which lowers
power consumption and hardware complexity—two
factors that are crucial for battery-powered edge
devices—in contrast to single-cycle processors, which
carry out each instruction in a single clock cycle at the
expense of high power consumption and complicated
hardware. Pipelined processors, which achieve higher
throughput but introduce complexity, increased power
draw, and potential pipeline hazards. IoT nodes and
medical monitors are examples of edge applications
that value energy efficiency over raw performance.

3. RISC-V Processor

The RISC-V processor is based on an open-source
instruction set architecture (ISA) that follows the
principles of Reduced Instruction Set Computing (RISC).
Originally developed at the University of California,
Berkeley, RISC-V was designed to be simple, modular,
and extensible, making it suitable for a wide range of
computing applications—from small embedded
systems to high-performance computing. One of its
most important advantages is that it is royalty-free and
openly available, allowing anyone to implement and
customize it without licensing fees or legal restrictions.
Its modular nature enables developers to include only
the instruction set extensions they need, improving
efficiency and reducing hardware complexity. RISC-V
supports 32-bit, 64-bit, and even 128-bit
implementations and offers standard extensions for
tasks like floating-point arithmetic and atomic
operations. This flexibility, combined with a growing
ecosystem of tools, IP cores, and community support,
makes RISC-V an increasingly popular choice for both
academic research and commercial product
development.

Instruction Set

One of the main benefits of RISC-V is its open-source
design, which can be used for free without paying
licensing fees. This makes it free from many of the
issues and intellectual property (IP) restrictions found
in proprietary ISAs like MIPS, SPARC, and x86. Other

Vol 46 No. 10
October 2025

open-source ISAs like OpenRISC and SPARC V8 are
available, but RISC-V is different with its modular
architecture. This modularity allows hardware
developers to incorporate only the instruction sets
necessary for an application, maximizing efficiency
through the elimination of unnecessary hardware
overhead.

RISC-V consists of a base integer ISA and a variety of
optional extensions. The base ISA must be included in
every implementation, and the optional extensions are
divided between standard and non-standard types.
Standard extensions are commonly applicable and are
designed to work together without interference,
whereas non-standard extensions are more specialized
and can overlap with other extensions. This makes it
possible to customize implementations for particular
use cases.

Four principal standard extensions to RISC-V in addition
to the base integer instruction set exist:

'M': Supports integer multiplication and division.

'A": Introduces atomic instructions for synchronization
of memory in multi-processor systems.

'F': Supports single-precision floating-point operation.
'D'": Supports double-precision floating-point operation.

A configuration with all four of these extensions and the
base integer instructions (IMAFD) is usually called 'G',
which makes up the RV32G variant for a 32-bit system.

4, Literature Review

The rapid growth of the Internet of Things (loT) and
Wireless Sensor Networks (WSN) has driven the rise of
edge computing. This approach moves data processing
closer to the source, helping to reduce issues tied to
cloud-centric methods, such as high latency, bandwidth
limits, and privacy concerns [1], [7], [8]. This distributed
computing model is a requirement for real-time
processing, quick response(lesser latency), and
localized intelligence across various applications, such
as smart infrastructure like smart grids [7], wearable
devices, and smart homes [1], [3]. However, edge
devices often face limitations in resources and power,
which requires unique processor designs to balance
performance, energy efficiency, and cost [1], [6].
Traditional Instruction Set Architectures (ISAs) already
present may not perform well for these low end,
power-sensitive applications [1], [3], [4], [6]. As a result,
RISC-V has originated as a promising alternative. It is an

147

Journal of Harbin Engineering University
ISSN: 1006-7043

open-source, modular, and adaptable Instruction Set
Architecture [3], [4], [6], [9], [10]. Its modularity
enables designers to customize processor functionality
to meet specific applications, also includes adding
specialized instruction set extensions, like integer
multiplication and division (M-extension) [3], [6], [10].
This project focuses on designing a Multicycle RV32IM
microprocessor for edge computing applications. This
literature survey provides context and supports our
method, by examining existing research on RISC-V
processor designs and also the strategies for improving
energy efficiency and performance and their usage in
various edge computing scenarios including important
factors like security.

Foundational RISC-V Architectures

Research into RISC-V core architectures for edge and
loT applications provides a spectrum of design
complexities. Simple single-cycle implementations are
adopted for its proven low-power and minimal
resource usage. Meeradevi et al. [5] demonstrated a
basic 32-bit RV32l single-cycle processor design
focused on functional verification at a low frequency
(2.2 KHz), serving as a foundation for our design.
Building upon this simplicity, Shukla et al. [1] proposed
an energy efficient single-cycle RV32l microprocessor
implemented as an ASIC on a 180 nm CMOS process,
achieving competitive power efficiency (0.29
mW/MHz) by rigorously minimizing redundant
hardware, highlighting its suitability for low-end edge
applications. To address the demand for higher
throughput, pipelined RISC-V architectures have been
extensively explored. Kumar and Ray [2] introduced an
adaptive two-stage pipelined RV32l| soft-processor,
demonstrating an innovative approach to energy
efficiency by dynamically activating the second stage
only during memory operations, resulting in a 28.2%
power reduction compared to single-cycle RV32I
designs on an FPGA. For more generalized
performance, Raveendran et al. [4] detailed the micro-
architectural design and analysis of a 5-stage pipelined
RISC-V processor with advanced micro-architectural
elements, including comprehensive data and control
hazard handling (with branch prediction and epoch
registers) and an out-of-order execution Floating Point
Unit (FPU). The need for balanced performance and
adaptability in diverse loT scenarios has led to
configurable pipelined designs. Chang et al. [6]
proposed a configurable five-stage pipelined RV32IM
processor core, enabling operation in low power (RV32|

Vol 46 No. 10
October 2025

only) or high-performance (with ‘M’ extension) modes.
This design, which includes support for supervisor and
user privilege levels and CSRs, exhibited superior
performance compared to the ARM Cortex-M3.
Concurrently, Singh et al. [9] presented another 5-stage
pipelined RV32IM core specifically implemented on
FPGA, reinforcing the practical integration of a 2-bit
branch predictor for increased throughput. A critical
design consideration is the effective integration of
multicycle integer multiplication and division. While
RV32l is suitable for basic embedded systems, many
real-world edge applications benefit significantly from
hardware-accelerated multiply/divide operations [3],
[10]. Our base for this work, Is lam et al. [10], addresses
this by proposing RVCoreP-32IM, an extension of the
RVCoreP soft processor to support the RISC V M-
extension. This paper provides a crucial quantitative
analysis of the benefits and overheads of integrating
multicycle hardware multiplication and division into a
5-stage pipelined soft processor using a fork-join
method. Their benchmarking demonstrates a
significant performance improvement of 1.87 to 3.13
times compared to RV32l, albeit with an approximate
1.5x increase in LUT resource utilization. This
comprehensive evaluation is vital for understanding the
performance gain versus hardware cost trade-offs
associated with incorporating multicycle units.

Table 1: RISC-V Instruction Encoding Format

31 25 24 0] 1 15 4 |12]0
[R-type funct? 2 | sl | functd wd opcode [
. I-type immediate[11:0] ["rs1 | funet3 rd opcode
["Saype | immed[11:5] | r52 | sl | funct3 | immed[4:0] | opcode
["SB-type | immed[12,10:5] | rs2 | rsl | funct3 | immed[4:1.11] | opcode

Ul-type immediate[20,10:1,11,19:12] rd opcode

U-type immediate[31:12] rd opcode

Table 2: Comparison of Instruction Set Architectures

Features MIPS | ARMvS | OpenRISC | RISC-V
Free & Open v
Base+Ext
Compressed
32-bit

64-bit

128-bit
Privileged ISA
IEEE 754-2008

EENENES
<

<
LAaRAAAS S

Lasas

Specialized Cores and Accelerators for Edge Al

As edge computing increasingly incorporates Al,
researchers also focus on specialized hardware to
speed up machine learning tasks. This often involves
extending the base RISC-V ISA with custom instructions
or coprocessors. A review by [3] outlines RISC-V’s role
in the entire edge intelligence stack. It covers

148

Journal of Harbin Engineering University
ISSN: 1006-7043

accelerators, compilers, toolchains, and various Al
applications such as object detection, autonomous
navigation, and smart healthcare. Extending this idea,
the AI-RISC project [11] suggests a scalable RISC-V
processor that integrates hardware accelerators (Al
Functional Units) directly into the processor pipeline.
This design uses hardware, ISA, and software co-design
and achieves a 17.63x speedup on vector-matrix
multiplication and a 3.93x improvement in energy
efficiency compared to a basic RISC-V core. Similarly, a
study by Yadav et al. [12] on a RISC-V System on Chip
(SoC) with custom DSP accelerators shows a 17%
reduction in power usage compared to an ARM Cortex-
MO, showcasing the power-saving benefits of including
specialized accelerators for edge computing. These
strategies are further refined by highly focused designs.
A Reconfigurable Approximate Computing RISC-V
Platform [13] offers a 3-stage pipelined core that allows
configurable trade-offs between accuracy and energy
use. This is especially useful for applications requiring
fault tolerance, where some imprecision is acceptable
in return for power savings. For specific uses, the
RisCO2 processor [14] was designed for a low-power
CO2 concentration sensor and achieved a 53.5%
reduction in energy consumption compared to a
reference implementation. This illustrates how
customizing RISC-V processors for specialized tasks can
lead to significant energy savings.

Multicore Platforms and System-Level Challenges

The massive scale of IoT creates a need for solutions
that ex tend beyond single-core designs to manage
large, distributed, and parallel workloads. The paper
”Developing a Multicore Platform Utilizing Open RISC-V
Cores” [15] addresses this need by focusing on building
a multicore platform that takes advantage of RISC-V’s
open and flexible nature. This work examines the
system-level challenges of coordinating multiple cores
and managing shared resources. These factors are
crucial for scalable edge systems that need to perform
various tasks concurrently. This indicates a significant
move toward enabling the complex processing
capabilities needed for advanced edge applications. In
addition to core architecture, successful edge
computing systems also require attention to wider
system-level needs. Security and privacy are critical in
highly distributed loT settings [8]. Alrowaily and Lu [8]
review secure edge computing in loT, detailing
essential security needs (confidentiality, integrity,
availability) and risk-sharing tactics. Their research

Vol 46 No. 10
October 2025

emphasizes the requirement for processors that can
support secure and dependable functions in a
distributed edge environment. Moreover, practical
applications like smart grids require real-time data
processing, multi-protocol adaptation, and immediate
response capabilities, often necessitating multi core
processing at the edge layer [7].

Research Gaps and Motivation for the Proposed Work

The literature reviewed shows significant progress in
RISC Vprocessor design, from ultra-low-power single-
cycle cores to performance-focused pipelined and
configurable architectures. Studies have quantitatively
assessed the benefits of adding multicycle hardware
multiplication and division (M-extension) [10], while
the trend of using specialized Al and DSP accelerators is
growing [11], [12]. However, there remains a need for
a unified approach that dynamically optimizes a
multicycle RV32IM microprocessor for a variety of edge
computing applications, particularly focusing on the
complex trade-offs between performance
improvement and energy/area costs in a truly adaptive
way. While configurable processors [6], [13] offer
flexibility, there’s still a need to investigate more
refined, real-time adaptive strategies for multicycle
units that can adjust processing capabilities based on
current workload needs. This would help achieve
optimal energy efficiency for irregular or highly
dependent edge computing tasks. Furthermore,
despite clear performance advantages of RV32IM [10],
specific design choices for multicycle implementations
that further cut down resource usage while maintaining
high performance per watt across varied edge
applications (like those requiring strong security
features [8] or real-time protocol handling [7]) need
more thorough exploration. Building on Islam et al.’s
[10] insights regarding the integration of the multicycle
'M’ extension, this project aims to design and evaluate
a new Multicycle RV32IM Microprocessor for Edge
Computing Applications. Our work will examine
advanced micro-architectural optimizations within the
multicycle execution framework to boost energy
efficiency and adaptability. This will include a thorough
analysis of the power-performance-area trade-offs
associated with different multicycle unit designs,
striving for a design that is not only highly effective for
typical RV32IM workloads but also accounts for the
dynamic requirements and essential non functional
properties demanded by next-generation intelligent
edge devices.

149

Journal of Harbin Engineering University
ISSN: 1006-7043

5. Proposed Architecture

The previous proposed architectures are either single
cycle or pipelined architectures, depending on which
increases complexity for high performance. In this
paper, a multicycle architecture is being proposed with
unified memory and with RV32M support, which is
usually missing. The architecture in Fig. 1 combines the
submodules including program counter, unified
memory, register file, instruction registers, register file,
ALU sign extension, branch comparison, and this data
path is connected to an external control unit, it
supports multicycle operations.

Program Counter (PC): A crucial part of the Datapath,
the Program Counter (PC) creates the 32-bit address
(pc) for instruction fetches from the shared 4KB
memory. Through a 2 bit control signal (pc_src) from
the Control Unit, it facilitates conditional branches
(PC+immediate), sequential execution (PC +4), and
jumps (JAL, JALR).

Unified Memory: In a von Neumann architecture, the
Datapath’s Unified Memory module offers a 4KB word-
addressable memory array (1024 x 32-bit words) for
both data accesses and instruction fetches. In order to
ensure RISC-V compliance, it supports RV32I load/store
instructions (LB, LH, LW, LBU, LHU, SB, SH, and SW) with
byte, half-word, and word granularity. Strict alignment
is enforced by the module, which returns 32" hxxxxxxxx
for misaligned loads and requires word aligned
instructions and proper alignment for data accesses.
While initialization is done with a program,
synchronous read/write operations follow the multi-
cycle pipeline. Hex files make simulation easier.

Fig. 2. Proposed Architecture

Instruction Register: The 32-bit instruction fetched
from the unified memory for decoding in the multi-
cycle pipeline is kept in the Instruction Register (IR).
When inst load is active, it loads the instruction from
memory and directs it to the Control Unit, Register File,
and Sign Extension modules.

Vol 46 No. 10
October 2025

Register File: The RISC-V processor’s 32 x 32-bit general
purpose registers xO-the Register File of the DataPath
controls x31, and x0 is hardwired to zero. It employs
instruction fields instr[19:15], instr[24:20], and
instr[11:7] for addressing and provides two read ports,
rs1 data and rs2 data, for source operands and one
write port, rd data, for results. Synchronous writes
occur on the clock edge if enabled by reg write, and
resets set registers to zero. The Register File exchanges
data with the Unified Memory for load/store, the
Instruction Register for addresses, and the ALU for
operands.

Branch and Sign-Extend: The Branch Compare module
compares register values rsl data and rs2 data
according to the funct3 field to generate the branch
taken signal. It accomplishes this by checking
conditions for RV32l branch instructions (i.e., BEQ, BNE,
and BLT). The signal is what enables effective control
flow in the multi-cycle pipeline by causing the Control
Unit to update the Program Counter through pc src. I-
type, S-type, B-type, J-type, and U-type instructions are
handled by the Sign Extension module, which generates
32-bit immediates from instruction fields depending on
imm sel. To perform arithmetic and address
computation, it feeds the current input to the ALU; to
branch and jump, it feeds the Program Counter.

ALU: Due to its modularity and open-source nature, the
RISC-V instruction set architecture (ISA) has grown to
be widely used in embedded systems. Part of every
RISC-V processor, the Arithmetic Logic Unit (ALU) is
responsible for performing arithmetic and logical
operations. RV32| (base integer) and RV32M
(multiplication/division) instruction sets are supported
by the 32-bit ALU discussed in this paper. By employing
a finite state machine (FSM) for multiple-cycle
operations such as multiplication and division and
single-cycle for simple instructions, the design puts a
strong emphasis on efficiency. For maximizing division
performance, a non restoring division algorithm is
employed, carrying out 8 bits per cycle for 4 cycles. To
keep latency at a minimum, special cases such as
division by zero are also handled by the ALU in
combination. Some of the contributions of this work
include an RV32l and RV32M, RISC-V compliant ALU, an
effective FSM for multi-cycle operations, and a
lightweight non-restoring division algorithm.

RV32M instructions are frequently not supported by
earlier ALU designs for RISC-V processors, like those in
[1], which concentrate on single-cycle operations to

150

Journal of Harbin Engineering University
ISSN: 1006-7043

reduce latency. Pipelined architectures are used in
other implementations [6], which boost throughput at
the expense of increased resource consumption. Using
a non-restoring division algorithm to balance
complexity and performance, our design stands out for
supporting both single-cycle and multi-cycle operations
in a small footprint. Our method processes 8 bits per
cycle, achieving division in 4 cycles.

The proposed ALU is a 32-bit design with the following
inputs and outputs: Inputs: 32-bit operands A and B, a
5 bit opcode, clock (clk), and reset (rst). Outputs: 32-bit
result (ALU out), zero flag, and ready signal. The ALU
supports 18 operations from the RV32l and RV32M
instruction sets, including addition (ADD), subtraction
(SUB), logical shifts (SLL, SRL, SRA), comparisons (SLT,
SLTU), bitwise op erations (AND, OR, XOR),
multiplication (MUL, MULH, MULHSU, MULHU), and
division/remainder (DIV, DIVU, REM, REMU). A 2-bit
FSM manages three states: IDLE (single-cycle
operations), MUL (multi-cycle multiplication), and DIV
(multi-cycle division/remainder).

Control unit: This paper presents a Control Unit for a
multi cycle RISC-V processor supporting RV32l and
RV32M instructions. The design features a five-state
FSM with a stalling mechanism for multi-cycle
operations, optimizing resource usage for edge
computing applications. Multi-cycle designs provide
simplicity but may lack support for RV32M multicycle
operations. Our Control Unit distinguishes itself with a
five-state FSM that stalls for multi-cycle ALU operations
(e.g., MUL, DIV) using alu ready, reducing hardware
overhead. The integration with a unified memory

DataPath further enhances efficiency.

Fig. 3. Control Unit

The Control Unit implements a five-state FSM to
manage the multicycle processors as shown in the Fig.
2. The states are: FETCH: Initiates instruction fetch with
inst read and inst load. DECODE: Decodes the
instruction (op code, funct3, funct7) and sets control
signals (e.g., alu op, reg write). EXECUTE: Executes ALU

Vol 46 No. 10
October 2025

operations, stalling until alu ready for multi-cycle
RV32M instructions. MEMORY: Handles load/store
operations with data read or data write. WRITEBACK:
Writes results to the register file with reg write.

6. Results and Discussion

By simulation on a testbench implemented using UVM,
the multi-cycle RV32IM processor design efficiently
executes a range of instructions. Multi-cycle operations
such as MUL and DIV illustrate the operation of the ALU
in handling complex computations in multiple cycles,
while single-cycle instructions such as ADD, SUB, and
AND are executed efficiently. Program Counter
efficiently

[235) Opcode: 0x13, RS1: x0, RS2: x1, RD: x1

[235] Functd: 0x0, Funct?: 0x00

[235] ALU Operation: ADD

[235] Operands: RS1.0x0DDODOCO, RS2/INM0X00000001

[235] === SCOREBOARD VERIFICATION wews

[235] VERIFY: Checking instruction 3 at PC=0x00000008

[235) VERIFY: PC progression check - Expected=0x00000008, Actual-0x00000008, PASS

[235] VERIFY: Instruction decode OK - ADDI

[235) VERIFY: ALU operation ADD - PASS

[235) VERIFY: Next expected PC = 0x0000000c

[245) STATE TRANSITION: FETCH -> DECODS

[245] === REGISTER WRITE ===

[245] REG: writing 0x00000002 to register x2

[255] STATE TRANSITION: DECODE -> EXECUTE

[255) === ALU OPERATION COMPLETE ===

[255) ALu: ADD

[255] ALU: A=0x00000000, B=0x00000002

[255) ALU: Result=0x00000002, Ready=1

[255) ALU: 0+ 2 =2

[265] STATE TRANSITION: EXECUTE -> WRITEBACK

[265) wem REGISTER WRITE mmm

[265]) REG: writing Ox00000002 to register x2

[275) STATE TRANSITION: WRITEBACK -> FETCH

[275) === INSTRUCTION FETCH ===

[275] PC=0x0000000c, INST=0x00200113 (ADDI)

[275] Instruction Details:

[275] Opcode: 0x13, RS1: x0, RS2: x2, RD: x2

[275] Funct3: 0x0, Funct?: Ox00

[275] ALU Operation: ADD
Operands: RS1~0x00000000,

=== SCOREBOARD VERIFICATION

VE

2/ 14 0x00000002

Checking instruction 4 at PC.0x0000000¢
progression check - Expected=0x0000000c, Actual=0x0000000c, PASS

WO OW R MO WM OB W oW O M WO W W OW RO W WM W R NN KW MWW

Fig. 4. Design and Testbench Modules

Loading sv_std.std
Loading work.processor_if(fast)

Loading work.uvm_pkg(fast)

Loading work.uvm_pkg_sv_unit(fast)

Loading work. questa_uvm_pkg(fast)

Loading work.processor._testbench_top(fast)

Loading work.processor_if(fast_2)

Loading work.RV32IM MultiCycle(fast)

Loading work.DataPath(fast)

Loading work.Program_Counter (fast)

Loading work.unified Memory(fast)

Loading work. Instruction_Register(fast)

Loading work.Register_File(fast)

Loading work.5ign_Extend(fast)

Loading work.Branch_Compare(fast)

Loading work.ALU(fast)

Loading work.Stage_Register (fast)

Loading work.Control_unit(fast)

Compiling /tmp/unknown@8c6567358243_dpi_51/1inux_x86_64_gcc-10.3.0/exportwrapper.

Loading /tmp/unknown@8c6567358243_dpi_51/1inux_x86_64_gcc-10.3.0/vs im_auto_compile.so

run -all
2 UMLINFO /usr/share/questa/ques

erilog_src/uvm-1.2/src/base/uvm_root.svh(392) @ 0: reporter [UVM/RELNOTES]

Fig. 5. Flow of five stage simulation

handles control flow instructions such as JALR, utilizing
the pc src mechanism, ensuring proper program flow
updates. With transitions such as STATE IDLE to STATE
MUL or STATE IDLE to STATE DIV EXECUTE to MEMORY
synchronized through the ready signal, the state
machines within the ALU and Control Unit work as
expected, providing a solid foundation for the
processor’s multi-cycle architecture. By the simulation

151

Journal of Harbin Engineering University
ISSN: 1006-7043

results, the design is dependable since the LSB masking
of Program Counter for JALR targets avoids any
misalignment possibilities and the multi-cycle support
of the ALU for MUL and DIV operations works as
intended. With the 4-cycle DIV over the 2-cycle MUL
trade-off being an understandable design choice, this
verification highlights the processor’s viability for
prototype or teaching purposes.

Vol 46 No. 10
October 2025

[515] VERIFY: Checking instruction 10 at PC=0x00000024

[515] VERIFY: PC progression check - Expected=0x00000024, Actual=0x00000024, PASS
[515] VERIFY: Instruction decode OK - ADDI

[515] VERIFY: ALU operation ADD - PASS

[515] VERIFY: Next expected PC = 0x00000028

=== VERIFICATION PROGRESS ===

Instructions verified: 10

PC progression errors: 0

ALU verification errors: 0

Instruction decode errors: 0

Auarall arean natas A ANV

Fig. 9. Overall Error Summary

The lack of functional errors in the UVM testbench
shows the way the implementation is done. Hardware
synthesis may be employed to optimize further
performance and scalability in the future, setting this
work as a basis for future studies in advanced
processors.

Table 3: Processor Verification Statistics

Fig. 6. Final processor Statistics

ASPECTS STATUS
Instruction Fetch Success
Overall Error rate 0.00%
Overall pass rate 100%
Verification Errors 0
Scoreboard Verification Passed
Total Processor Verification Passed

Fig. 7. Instruction execution by proposed architecture

7. Conclusion

By means of efficient simulation validation, the multi-
cycle RV32IM processor offers a stable and adaptable
platform for RISC-V architecture research. The design
effectively maintains a balance between complexity
and performance by using a multi-cycle methodology to
support the M-extension instructions with regard to
feasible dependable control flow.

WML AIN W M1 I Sy MU LU MU LA T YAl § VM N WY kg o

--- UW Report Summary ---

B
#
** Report counts by severity
UWL_INFO : 18

UVM_ERROR : 0

UVM_FATAL : 0

#* Report counts by id
[DRIVER] 3

[MONITOR] 1

[Questa uwM] 2

[RNTST] 1

[SCOREBOARD] 2
[SEQUENCE] B

[TEST] 3

[TEST_DONE] 1
[UW/RELNOTES] 1

R S G

Fig. 8.UVM Report summary

Acknowledgement

We would like to thank Dr. Kumaravel S [VIT Vellore,
VLS| Design] for his constant support and guidance
during the development of this multi-cycle RV32IM
processor project. We are grateful to our peers for their
valuable feedback and support in making the project
better at every turn.

References

[1] Shukla, Satyam, Punyesh Kumar Jha, and Kailash
Chandra Ray. “An energy-efficient single-cycle
RV32l microprocessor for edge computing
applications.” Integration 88 (2023): 233-240.

[2] Kumar, S., Ray, K. C. (2024). An energy-efficient
adaptive two stage pipeline RISC-V based soft-
processor for edge-computing applications.

[3] Q. Wei, E. Cui, Y. Gao and T. Li, “A Review of Edge
Intelligence Applications Based on RISC-V,” 2023
2nd International Conference on Computing,
Communication, Perception and Quantum
Technology (CCPQT), Xiamen, China, 2023, pp.
115-119, doi: 10.1109CCPQT60491.2023.00025.
keywords: Trusted comput-ing; Systematics;
Image edge detection; Software algorithms;
Computer architecture; Software; Hardware;
RISC-V; edge intelligence; Al; energy efficiency,

152

Journal of Harbin Engineering University
ISSN: 1006-7043

(4]

(5]

(6]

(7]

(8]

(9]

A. Raveendran, V. B. Patil, D. Selvakumar and V.
Desalphine, “A RISC-V instruction set processor-
micro-architecture design and analysis,” 2016
International Conference on VLSl Systems,
Architectures, Technology and Applications (VLSI-
SATA), Bengaluru, India, 2016, pp. 1-7, doi:
10.1109VLSI-SATA.2016.7593047. keywords:
Registers; Pipelines; Computer architecture;
Decoding; Reduced instruction set computing;
Organizations; Processor Design; Processor
Microarchitecture; Out-Of-Order Processor; RISC-
V Instruction Set; RISC Processor; IEEE 754-2008
FPU Standard;Floating Point Co-processor,

T. Meeradevi, K. Mohanraj, B. M. Mourissh, V.
Santhosh Sivaa, R Samikannu and S. Sasikala,
“Design of 32 Bit RISC V Processor,” 2024 15th
International Conference on Computing
Communication and Networking Technologies
(ICCCNT), Kamand, India, 2024, pp. 1-7, doi:
10.1109/ICCCNT61001.2024.10726132.
keywords: Reduced instruction set computing;
Memory management; Pipelines; Process control;
Software; Registers; Reliability; Signal analysis;
Optimization; Testing; PUF; Modeling attacks;
Vulnerability; Enhanced Security; Unpredictable
responses,

Chang, Y.; Liu, Y.; Peng, C.; Guo, J.; Zhao, Y. Design
of a Configurable Five-Stage Pipeline Processor
Core Based on RV32IM. Electronics 2024, 13, 120.
https://doi.org/10.3390/electronics13010120

S. Song, S. Li, H. Gao, J. Sun, Z. Wang and Y. Yan,
“Research on Multi-Parameter Data Monitoring
System of Distribution Station Based on Edge
Computing,” 2021 3rd Asia Energy and Electrical
Engineering Symposium (AEEES), Chengdu, China,
2021, pp. 621-625, doi: 10.1109/AEEES51875.
2021.9403026. keywords: Zigbee; Process control;
Distribution networks; Power system stability;
Power grids; Real-time systems; Security;
distribution station; Internet of things; edge
computing; multi-parameter acquisition;
intelligent terminal,

M. Alrowaily and Z. Lu, “Secure Edge Computingin
loT Systems: Review and Case Studies,” 2018
IEEE/ACM Symposium on Edge Computing (SEC),
Seattle, WA, USA, 2018, pp. 440-444, doi:
10.1109/SEC.2018.00060. keywords: Edge
computing; Task analysis; Computer architecture;
Internet of Things; Sensors; Password; Edge
computing, Security, Internet of Things (loT),
Singh A, Kumar A, Singh A, Reddy RA, Pushpalatha
KN. Design and Implementation of RISC-V ISA

(10]

(11]

(12]

(13]

(14]

(15]

Vol 46 No. 10
October 2025

(RV32IM) on FPGA. SSRG International Journal of
VLSI Signal Processing. 2023;10(2):17-21.

Ashraful Islam, M., Miyazaki, H., and Kise, K.,
“RVCoreP-32IM: An effective architecture to
implement mul/div instructions for five stage
RISC-V soft processors”, iiéarXiv e-printsi/i¢, Art.
no. arXiv:2010.16171, 2020. doi:10.48550/arXiv.
2010.16171

Verma, Vaibhav. AI-RISC: Scalable RISC-V
Processor for loT Edge Al Applications. University
of Virginia, Electrical Engineering - School of
Engineering and Applied Science, PHD (Doctor of
Philosophy), 2022-04-27, https://doi.org/10.
18130/nj7t-7j93.

Delavari, A., Ghoreishy, F., Shahriar Shahhoseini,
H., and Mirzakuchaki, S., “A Reconfigurable
Approximate Computing RISC-V Platform for
Fault-Tolerant Applications”, ji¢arXiv e-printsi/ié,
Art. no. arXiv:2410.00622, 2024. doi:10.48550/
arXiv.2410.00622.

Yadav, P., “Design and Implementation of a RISC-
V SoC with Custom DSP Accelerators for Edge
Computing”, ji¢arXiv e-printsi/ié, Art.
no.arXiv:2506.06693, 2025. doi:10.48550/
arXiv.2506.06693.

N’u~nez-Prieto, R., Castells-Rufas, D. and Ter’es-
Ter’es, L., 2023. RisCO2: Implementation and
Performance Evaluation of RISC-V Processors for
Low-Power CO2 Concentration Sensing.
Micromachines, 14(7), p.1371.

H. Jang et al., “Developing a Multicore Platform
Utilizing Open RISC-V Cores,” in IEEE Access, vol. 9,
pp. 120010-120023, 2021, doi: 10.1109/
ACCESS.2021.3108475. keywords: Multicore
processing; Coherence; Computer architecture;
Hardware; Software; Field programmable gate
arrays; Multicore platform; RISC-V; system-on-
chip (SoC); electronic design automation (EDA),

153

